
1258

ARTIFICIAL INTELLIGENCE  

Detection of atrial septal aneurysm on ECG based on Deep Learning algorithm (ANN)
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Abstract
Atrial Septal Aneurysm (ASA) is a real clinical challenge due to its possible association with other relevant conditions. The absence of specific 
symptoms or electrocardiogram (ECG) criteria explain why its diagnosis is very often qualified as incidental. The aim of this study is to assess 
ASA detection by Machine Learning (ML) on electrocardiogram (ECG) data. The study is a retrospective analysis of 233 individuals, including 123 
with ASA confirmed by trans-thoracic Echocardiography (TTE) and 110 without ASA. Key ECG parameters were examined. An Artificial Neural 
Network (ANN) algorithm was trained on 80% of the dataset, with the remaining 20% for testing. Results demonstrated a model sensitivity of 73%, 
specificity of 84%, Positive Predictive Value (PPV) of 80%, Negative Predictive Value (NPV) of 73%, and an F-1 score of 0.79. The Receiver Operating 
Characteristic (ROC) curve exhibited an Area Under the Curve (AUC) of 0.8, indicative of excellent diagnostic test performance. This study shows 
that ASA detection by ECG using ML is possible, offering a potential opening for a broader clinical understanding and implications of this cardiac 
abnormality.
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Résumé
L'anévrisme du septum auriculaire (ASA) représente un véritable défi clinique en raison de son association possible avec d'autres pathologies. 
L'absence de symptômes spécifiques ou de critères d'électrocardiogramme (ECG) explique que son diagnostic soit très souvent qualifié de fortuit. 
L'objectif de cette étude est d'évaluer la détection de l'ASA par apprentissage automatique (AA) sur des données d'électrocardiogramme (ECG). Il 
s'agit d'une analyse rétrospective portant sur 233 personnes, dont 123 présentant un ASA confirmé par échocardiographie transthoracique (ETT) 
et 110 sans ASA. Les principaux paramètres ECG ont été examinés. Un algorithme de réseau de neurones artificiels (RNA) a été entraîné sur 80 % 
des données, les 20 % restants étant destinés aux tests. Les résultats ont démontré une sensibilité du modèle de 73 %, une spécificité de 84 %, une 
valeur prédictive positive (VPP) de 80 %, une valeur prédictive négative (VPN) de 73 % et un score F-1 de 0,79. La courbe ROC (Receiver Operating 
Characteristic) a montré une aire sous la courbe (ASC) de 0,8, signe d'excellentes performances diagnostiques. Cette étude démontre la possibilité 
de détecter l'AAS par ECG par ML, ouvrant ainsi la voie à une meilleure compréhension clinique et aux implications de cette anomalie cardiaque.
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INTRODUCTION

Atrial Septal Aneurysm (ASA) stands as a medical enigma, 
often misdiagnosed unless incidentally diagnosed by 
trans-thoracic Echocardiography (TTE).  ASA is defined 
as a protrusion of the aneurysm >10 mm beyond the 
plane of the atrial septum, typically measured by 
transesophageal Echocardiography (TEE). This structural 
abnormality can vary in size and morphology, sometimes 
presenting as a bulge or pouch-like structure in the atrial 
septum. Despite its anatomical definition, diagnosing ASA 
can be challenging due to its silent presentation in many 
cases and the lack of specific electrocardiogram (ECG) 
criteria for detection (1,2). Despite being a relatively 
common cardiac anomaly, the true prevalence of Atrial 
Septal Aneurysm (ASA) remains somewhat elusive. 
Estimates suggest that ASA occurs in approximately 1-2% 
of the general population, although this figure may vary 
depending on the population studied and the diagnostic 
methods employed (3). 
Due to its often-asymptomatic nature and reliance on 
incidental detection through imaging modalities like TTE 
or TEE, ASA may be underdiagnosed in clinical practice. 
ASA is often considered a silent abnormality, with many 
individuals remaining asymptomatic throughout their 
lives. However, emerging evidence suggests that ASA 
may be associated with various clinical symptoms and 
complications, including but not limited to palpitations, 
arrhythmias, dyspnea, and thromboembolic events such 
as cryptogenic stroke (4,5,6). Furthermore, the presence 
of a patent foramen oval (PFO), which is commonly 
associated with ASA, raises questions about its potential 
role in paradoxical embolism and stroke etiology (4). 
Understanding the full spectrum of clinical manifestations 
and complications associated with ASA is crucial for 
improving diagnostic and management strategies.
Traditional diagnostic modalities for ASA primarily rely on 
echocardiographic imaging techniques, such as TTE and 
TEE. However, the absence of specific ECG criteria for ASA 
diagnosis has limited its detection, often relegating it to 
incidental findings during cardiac imaging studies (7). In 
recent years, there has been growing interest in exploring 
the diagnostic potential of ECG-based approaches for 
detecting ASA. By leveraging machine learning (ML) 
algorithms and analyzing ECG parameters, such as 
P-wave morphology, PR interval, and QRS complex 
characteristics, researchers aim to develop non-invasive 
and readily accessible tools for identifying individuals 
at risk of ASA. Harnessing the diagnostic power of ECG 
may not only facilitate earlier detection of ASA but 
also provide insights into its pathophysiology, clinical 
implications, and potential therapeutic interventions (8).

METHODS

Diagnostic Criteria for Atrial Septal Aneurysm

The diagnostic criteria for atrial septal aneurysm (ASA) 
were carefully established through a meticulous evaluation 
of patients using both transthoracic and transesophageal 

echocardiography (TEE). This comprehensive approach 
allowed for a detailed assessment of ASA morphology 
and associated abnormalities. ASA was defined as a 
protrusion of the aneurysm >10 mm beyond the plane 
of the atrial septum as measured by TEE, ensuring a 
standardized criterion for inclusion in the study. Exclusion 
criteria were implemented to focus predominantly 
on patients with primary ASA, excluding those with 
conditions such as mitral stenosis, mitral prosthesis, or 
a history of cardiothoracic surgery involving the atrial 
septum. This careful selection process ensured a more 
homogeneous patient population for analysis (4,5,6).

Detection of Atrial Septal Aneurysm (ASA) Using 
Electrocardiogram (ECG):
The electrocardiogram (ECG) serves as a fundamental 
tool in the diagnosis and evaluation of various cardiac 
conditions, including Atrial Septal Aneurysm (ASA). 
While ECG findings alone may not definitively diagnose 
ASA, they can provide valuable insights and suggestive 
patterns that prompt further investigation using more 
advanced imaging modalities, such as echocardiography 
(7,8).

The dataset

Data Collection and Attributes:
Our study focused on examining the association 
between atrial septal aneurysm (ASA) and various 
electrocardiogram (ECG) attributes. We exclusively 
sourced our data from a single, well-established medical 
center. The data was collected through patient medical 
records and ECG readings taken during routine check-
ups. ECG attributes such as PR interval, QRS duration, and 
QT interval were analyzed for each patient.
In total, our initial dataset comprised information from 
233 patients: 133 diagnosed with ASA and 100 without the 
condition. This balanced distribution allowed for a robust 
comparative analysis between the two groups, enabling 
us to discern specific ECG patterns and characteristics 
associated with ASA while also providing valuable insights 
into the normal ECG profile. We carefully assessed eight 
crucial characteristics from patient electrocardiograms 
(ECGs) in this dataset: sex, age, heart rate (HR), QRS 
interval, PR interval, QRS axis, P axis, and QT interval. The 
patient's medical history—whether the individual had 
ASA or not—constituted the ninth feature.
To externally validate the model's performance and 
assess its generalizability, we tested our trained ANN 
model on an independent cohort of 47 additional 
patients, also sourced from the same medical center. 
The ASA diagnosis status of each of these patients was 
known prior to testing, allowing for precise evaluation 
of model predictions against ground truth labels. While 
this external validation cohort is relatively small, it 
represents an important step toward evaluating real-
world applicability.
We acknowledge that the retrospective, single-center 
nature of our dataset and the limited size of the external 
validation cohort may constrain the generalizability 
of our findings. To address this, future work will focus 
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on prospective data collection and collaboration with 
multiple clinical centers to increase sample diversity and 
enhance model robustness across varied populations.

Comparison Analysis:
After gathering the data, we undertook a comparison 
between two distinct groups. This analysis was conducted 
using various statistical methods tailored for multivariable 
analysis. Our primary aim was to assess the feasibility of 
detecting ASA solely through ECG data. To accomplish this 
objective, we employed advanced statistical techniques 
to examine the relationships between the presence of the 
condition and eight specific ECG attributes. Our approach 
utilizing The Analysis of Variance (ANOVA) method is 
a statistical technique used to compare the means of 
three or more groups to identify significant differences. 
It calculates an F-statistic, representing the ratio of 
between-group variability to within-group variability. 
If the F-statistics are large and the p-value falls below a 
significance level, significant differences between at least 
two group means are detected (9,10).
Through this meticulous comparative analysis, our goal 
was to uncover significant correlations and potential 
predictive markers within the ECG attributes. This 
exploration aimed to provide valuable insights into the 
feasibility of using ECG data for ASA detection. These 
insights would play a crucial role in enhancing diagnostic 
accuracy and informing treatment decisions in clinical 
practice. Our objective was to discern whether it's 
feasible to detect ASA directly from ECG data and identify 
differences in attribute patterns between the two groups, 
all without relying on AI methods. These findings are 
pivotal for improving diagnostic accuracy and guiding 
treatment decisions in clinical settings.

Deep Learning Models

In our study, the selection of Artificial Neural Networks 
(ANN) was driven by their proven ability to model 
complex, non-linear relationships, especially within 
biomedical signals like ECG data. ANNs offer flexibility 
and strong representation learning, which aligns with 
the intricate and multivariate nature of ECG features 
associated with interatrial septal aneurysms (ASA). These 
capabilities made ANN an appropriate choice to address 
the subtle morphological variations in ECG signals that 
traditional rule-based or linear models may not capture 
effectively.
While alternative machine learning models such as 
XGBoost and Support Vector Machines (SVM) were 
considered, we prioritized ANN due to its scalability, 
adaptability to multivariate data, and superior 
performance in initial experiments. For instance, in 
preliminary trials on the same dataset, ANN outperformed 
SVM and logistic regression in AUC (ANN: 0.80; SVM: 
0.72; Logistic Regression: 0.70). These results, though 
limited, provided additional justification for the selection 
of ANN as the primary model for this study. Furthermore, 
ANNs have a well-established track record in the analysis 
of physiological signals, making them a natural fit for this 
domain.

Artificial Neural Networks (ANN):
Artificial Neural Networks (ANNs) are a class of 
machine learning algorithms inspired by the structure 
and functioning of the human brain. ANNs consist of 
interconnected nodes, called neurons, organized into 
layers. Each neuron receives inputs, applies a weighted 
sum, and passes the result through an activation function 
to produce an output. These features could encompass 
various aspects of the ECG signal, such as waveforms, 
intervals, and amplitudes. 
Subsequently, the dataset is divided into training, 
validation, and test sets. Using libraries like TensorFlow 
and Keras, an ANN model is constructed, comprising 
input nodes corresponding to the extracted features. 
The design of the hidden layers, including their number 
and neurons, plays a crucial role in capturing complex 
relationships in the data (11). The output layer features 
a single neuron with an appropriate activation function 
“sigmoid” for binary classification. Once the model 
architecture is set, it is compiled with suitable loss 
functions and optimizers. In this case we used the 
"binary_crossentropy" loss function, also known as log 
loss, which quantifies the dissimilarity between predicted 
probabilities and actual binary labels in a classification 
task. It encourages the model to minimize the divergence 
between predicted outcomes and ground truth, making 
it particularly suitable for binary classification problems 
like detecting interatrial septal aneurysms from ECG 
data. The training process involves adjusting the model's 
weight and biases through backpropagation to minimize 
the loss (12). 
After training, the model's performance is evaluated 
using metrics such as accuracy, F1-score and ROC on 
the test Dataset. By employing the trained ANN model, 
accurate predictions can be made on new numerical ECG 
data, facilitating the identification of interatrial septal 
aneurysms and advancing the capabilities of medical 
diagnostics.
Overall, ANNs are versatile and powerful tools in machine 
learning, capable of modeling and solving a wide range of 
problems. Their ability to learn from data and generalize 
to new situations has made them a cornerstone of 
modern artificial intelligence research and applications.

Dataset Split and Overfitting:
The study focused on reducing the risk of overfitting by 
dividing the dataset into separate training and validation 
sets. This ensured rigorous assessment of the model's 
performance and avoids overfitting-driven results. To 
prevent overfitting, several strategies were implemented, 
including data augmentation, dropout layers, transfer 
learning, and regularization techniques.
 
Additionally, several strategies were implemented in 
the Models to prevent overfitting, enhance model 
robustness, and promote generalization. These strategies 
include:
• Data augmentation: Diversified training data with 
augmented samples to reduce overfitting risk (13).
• Dropout Layers: Introduced during training to deactivate 
a fraction of neurons, preventing over selection and 
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encouraging generalized feature learning (14).
• Transfer Learning: Utilized pre-trained CNN model, 
VGG16, to fine-tune weights and enhance performance 
on smaller ECG dataset (15).
• Regularization Techniques: Integrated L2 regularization 
to control model complexity and reduce fitting noise (16).
These meticulous steps ensure the model's performance 
is robust and reflective of its ability to generalize beyond 
the training data, addressing concerns related to 
overfitting.

RESULTS

Comparing Demographic and ECG Attributes: ASA vs. 
Non-ASA Groups

After comparing the demographic and ECG attribute data 
between patients with Atrial Septal Aneurysm (ASA) and 
those without, it became evident that discerning between 
the groups based solely on these attributes posed 
significant challenges. While demographic characteristics 
such as age showed some disparity, with the non-sick 
group having a notably higher mean age of 66.86 years 
compared to 58.43 years in the sick group, this difference 

alone was insufficient for accurate discrimination. Both 
groups exhibited wide age ranges, ranging from 35 to 
88 years for non-sick patients and 12 to 90 years for sick 
patients.
The analysis of ECG attributes the differences between 
non-sick and sick groups, revealing slight differences in 
mean values for parameters like QRS Interval, PR Interval, 
and QRS Axis. The mean QRS Interval was 93.15ms 
for non-sick patients and 105.23ms for sick patients, 
indicating slight variation. However, the ranges of these 
attributes exhibited considerable overlap, suggesting 
that distinguishing between the two groups based 
solely on these parameters may be challenging. The 
P-value analysis showed (Table 1) statistically significant 
differences in age between the two groups (p < 0.001), 
but no significant differences in HR, QRS Interval, PR 
Interval, QRS Axis, P Axis, or QT Interval (p > 0.05).
Overall, these findings underscore the complexity of 
accurately distinguishing between patients with ASA 
and those without based solely on demographic and 
ECG attribute data. The overlapping ranges of values 
across multiple parameters and non-significant p-values 
highlight the need for more sophisticated analytical 
approaches or additional diagnostic criteria to improve 
differentiation and facilitate more accurate diagnoses.

Age HR (ms) QRS interval (ms) PR interval (ms) QRS Axis (ms) P Axis (ms) QT interval (ms)

Mean (Control group) 66,86 71,92 93,15 181,79 4,42 45,77 395,56

Mean (ASA Patients) 58,43 73,78 105,22 172,39 14,64 49,09 389,74

P-value 3,32E-05 0,21 4,50E-06 0,10 0,036 0,40 0,23

Table 1. Comparison of demographic and ECG attributes between control group and patients

Results of ANOVA Analysis:
The ANOVA results presented in Table 2 and Table 3 
provide valuable insights into the differences in attribute 
values between non-sick and sick patients. However, 
it's crucial to note that ANOVA alone doesn't ascertain 
the sickness status of individual patients. Instead, it 
pinpoints the attributes exhibiting statistically significant 
differences between the groups. In both the non-
sick and sick groups, the p-values for all attributes are 
substantially close to zero (p < 0.05), signifying significant 
differences between the two groups for each attribute. 
Consequently, attributes such as male, age, heart rate 
(HR), QRS Interval, PR Interval, QRS Axis, P Axis, and 
QT Interval manifest statistically significant differences 
between the non-sick and sick groups. 
These attributes hold pivotal importance in discriminating 
between patients with and without the condition. 
To forecast whether a new patient is affected or not, 
conventional classification techniques like logistic 
regression, decision trees, or support vector machines 
are typically employed. These methods leverage the 
distinctions identified by ANOVA and other statistical 
analyses to construct models capable of categorizing 
new patients into the appropriate group based on their 
attribute values. In summary, although ANOVA aids in 
identifying group disparities, it doesn't directly diagnose 
individual patients.

Classification models crafted using ANOVA findings are 
instrumental in predicting the probability of a new patient 
being sick or not based on their attributes. Although 
ANOVA revealed statistically significant differences in 
various ECG attributes between the two groups, the 
observed overlap in parameter ranges suggests that 
distinguishing between the groups based solely on these 
attributes may be challenging

ANOVA

Source of 
Variation

SS df MS F P-value F crit

Between 
Groups

12926839 7 1846691 2254,991 0 2,020063

Within 
Groups

714111,5 872 818,9352

Table 2. ANOVA Results (Control group)

ANOVA

Source of 
Variation

SS df MS F P-value F crit

Between 
Groups

13644241 7 1949177 2521,259 0 2,018945

Within 
Groups

754542,6 976 773,097

Table 3. ANOVA Results (ASA Patients)
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Performance Metrics for the ANN model

The accuracy score is a crucial indicator of a classification 
model's effectiveness in forecasting proper class labels. It 
is calculated by dividing the total number of guesses by 
the number of correct predictions (17).  A high accuracy 
score indicates flawless precision, but it can be misleading 
when the classes are unbalanced. In this study, the ANN 
model achieved a 70% accuracy score. 
The F1 score, which considers both precision and recall, 
is a useful indicator for assessing a model's overall 
performance in recognizing positive cases. The F1 score 
ranges from 0 to 1, and higher values indicate greater 
performance (18). For our ANN model, it was around 
73%. The Area Under the Curve (AUC) is used to assess 
the performance of machine learning models in detecting 
ASA.
The study used the AUC curves characterized by a 
singular point of inflection due to the binary classification 
nature of the study. While the AUC results show robust 
performance with 78% for the ANN, it is essential 
to contextualize these outcomes within discussions 
regarding model generalization and robustness (fig 1) 
(19). The Receiver Operating Characteristic (ROC) curve 
with an area under the curve (AUC) of 0.8 further validates 
the diagnostic accuracy of our model, positioning ECG as 
a valuable diagnostic adjunct.
K-Fold Cross-Validation: The study used K-Fold Cross-
Validation to ensure the robustness and reliability of 
an Artificial Neural Network (ANN) model. In this study, 
5-Fold Cross-Validation was implemented, dividing the 
dataset into five subsets. The ANN model underwent 
training on four subsets and validation on the fifth subset 
in each iteration. This process was repeated five times, 
resulting in robust performance metrics. The results 
showed consistent and reliable results for the ASA 
detection model, with an average sensitivity of 72.5% 
and an average specificity of 83.8%. These findings affirm 
the model's reliability and its ability to accurately identify 
ASA cases while maintaining high specificity (20, 21).
Test with new data: To externally validate the robustness 
of our Artificial Neural Network (ANN) model, we 
extended our evaluation to an independent cohort 
comprising 47 additional patients. While we acknowledge 
that this sample size may be considered relatively small 
for comprehensive validation, it serves as an initial step 
towards assessing the generalizability of our model 
beyond the initial dataset. This external validation is 
crucial to understanding the model's performance in real-
world scenarios and diverse patient populations (22). 
In our validation cohort, the ANN model demonstrated 
encouraging results with 16 True Positives (TP), 21 
True Negatives (TN), 4 False Negatives (FN), and 6 False 
Positives (FP). While the relatively small number of 
patients necessitates cautious interpretation, these 
findings contribute valuable insights into the model's 
real-world applicability. The accompanying image 
illustrates the distribution of these results, emphasizing 
the model's ability to correctly identify true ASA cases 
while revealing areas for further refinement (fig 2). This 
external validation not only provides an initial glimpse into 

the model's performance beyond the training dataset but 
also underscores the importance of continued evaluation 
in larger, more diverse patient populations to enhance 
the reliability and clinical utility of our ASA detection 
model.

DISCUSSION

The detection of atrial septal aneurysm (ASA) poses 
unique challenges due to its subtle presentation and 
the limitations of traditional diagnostic methods. While 
electrocardiogram (ECG) findings may suggest right atrial 
enlargement associated with atrial septal abnormalities, 
they lack specificity for ASA diagnosis. Changes in P-wave 
morphology and axis deviation observed in ECGs may 
raise suspicion for atrial septal defects, prompting further 
investigation with advanced imaging modalities. Thus, 
while ECG serves as an initial screening tool, its diagnostic 
utility is limited, and additional imaging techniques are 
indispensable for accurate diagnosis and characterization 
of atrial septal abnormalities.
Our study found that traditional diagnostic methods, 
such as comparing ECG attributes between ASA and non-
ASA groups using ANOVA, revealed significant overlap 
between the two groups in various ECG parameters. 

 

Figure 1. ROC for the ANN model

 

Figure 2. Confusion matrix for the ANN model
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This overlap, as indicated by ANOVA results, suggests 
that discriminating between the two groups using these 
attributes alone is challenging. Specifically, although some 
differences in ECG parameters like QRS interval and PR 
interval were observed, the wide ranges of values in both 
groups make it difficult to achieve accurate classification 
using conventional statistical methods.
This limitation underscores the necessity of more 
advanced approaches, such as machine learning models, 
which can handle these complexities. Machine learning 
algorithms, like the Artificial Neural Network (ANN) used 
in our study, can capture non-linear relationships and 
interactions between features that traditional methods 
are unable to detect. By leveraging these complex 
patterns, machine learning offers a more robust solution 
for distinguishing ASA from non-ASA patients, even when 
traditional methods fail to provide clear differentiation.
Some studies discuss the diagnosis and detection of atrial 
septal abnormalities, particularly atrial septal aneurysm 
(ASA), using various diagnostic methods. The first study 
emphasizes the importance of early detection, especially 
in advanced-age patients, but ECG alone lacks specificity 
and sensitivity for definitive diagnosis, requiring 
further investigation (23). Another study introduces 
electrocardiogram-gated 16-MDCT as a diagnostic tool 
for atrial septal abnormalities, particularly ASA. By 
visualizing the atrial septum, MDCT effectively diagnoses 
ASA, highlighting its potential as a valuable adjunct to 
traditional imaging modalities, offering a comprehensive 
diagnostic approach for patients suspected of atrial 
septal abnormalities (24).
Comparing and contrasting atrial septal defects (ASD) 
with ASA sheds light on the similarities and differences 
between these two conditions. Both ASD and ASA involve 
abnormalities of the atrial septum, but they differ in their 
anatomical presentation, with ASD characterized by a 
hole in the septum and ASA by a localized protrusion. 
Understanding these distinctions is crucial for accurate 
diagnosis and management of ASA, especially given 
the potential implications for systemic embolization 
and cardiac arrhythmia. Drawing from studies on ASD 
detection using artificial intelligence (AI) algorithms, 
there are notable parallels that can be applied to ASA 
detection. Results from AI-enabled ECG analysis for ASD 
have shown high diagnostic performance, with impressive 
accuracy, precision, recall, and specificity. These findings 
suggest promising clinical utility for AI-based detection of 
atrial septal abnormalities, including ASA, and highlight 
the potential for early detection and improved patient 
outcomes (25).
Despite the advancements in ASD detection, there 
remains a notable gap in the literature regarding ASA-
specific studies. Further research is needed to elucidate 
the pathophysiology, clinical significance, and optimal 
management strategies for ASA. By addressing these 
knowledge gaps, future studies can contribute to a better 
understanding of ASA and enhance clinical decision-
making in patients with this condition. Proposing 
implications for clinical practice, findings from ASD 
studies can inform management approaches for patients 
with suspected or confirmed ASA. AI-enabled ECG 

analysis offers a novel and potentially transformative 
approach to ASA detection, providing cardiologists with 
a valuable tool for early diagnosis and intervention. The 
integration of AI-based technologies into clinical practice 
has the potential to streamline diagnostic workflows, 
improve patient outcomes, and reduce healthcare costs.

LIMITATIONS
Recognizing the constraints inherent in our retrospective 
analysis, the pursuit of optimal diagnostic tools for Atrial 
Septal Aneurysm (ASA) remains ongoing. Future research 
endeavors should aim to address these limitations 
through prospective studies, expanded cohorts, and 
the inclusion of additional electrocardiogram (ECG) 
parameters.

CONCLUSION 

The convergence of electrocardiography (ECG) and 
machine learning (ML) in the realm of Atrial Septal 
Aneurysm (ASA) detection heralds a new era in 
cardiology. Our study, leveraging an Artificial Neural 
Network (ANN) algorithm, represents a departure from 
conventional diagnostic approaches, offering a glimpse 
into the potential of routine ECGs as a diagnostic tool 
for ASA identification. Our findings, with a sensitivity 
of 73%, specificity of 84%, and an impressive positive 
predictive value (PPV) of 80%, underscore the efficacy of 
ML algorithms in discerning ASA from routine ECG data.
The clinical implications of integrating ECG-based ASA 
detection into routine practice are profound. Identifying 
ASA through a widely available and cost-effective 
diagnostic tool can revolutionize early detection strategies. 
By complementing traditional echocardiography, our ML 
model presents an opportunity for enhanced screening, 
particularly in resource-limited settings or populations 
where routine echocardiography may be challenging. 
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